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Boolean masking scheme based on 
secret sharing and multiparty computation

Provable security with minimal 
assumptions on the hardware
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One extra condition is required 
for using d+1 shares
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Independent 
input shares 
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Canright’s S-box decomposition 
has shown to be a good starting point
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Algebraic degree = 3
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Algebraic degree = 2
Sout= (d+1)2

A lower algebraic degree leads to a decrease in number 
of output registers and number of random masks

11

The number of output shares 
depends on the algebraic degree



We partition Canright’s S-box 
to only use multipliers
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Masks are refreshed after 
each multiplier
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Total randomness was reduced for 
more efficient first-order security
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The SCA is performed on 
a low-noise platform
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The 1st-order implementation passes 
leakage detection with 100M traces
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The 2nd-order implementation passes 
leakage detection with 100M traces
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The 2nd-order implementation passes 
leakage detection with 100M traces
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Bivariate leakage detected in the 2nd-
order implementation with PRNG Off
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Bivariate leakage detected in the 2nd-
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1st-orderunmasked

32 bits
54 bits

1.7x

2nd-order

126 bits

162 bits

1.3x
This work

Bilgin, 2015

Moradi, 2011
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Randomness 
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