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“In theory there is no difference
between theory and practice.

In practice there is.”

Practice

All masked AES
use more than

d+1 shares
(Moradi, 2011, Bilgin, 2015, ...)
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Masking with d+1 shares
INn nonlinear operations

IS possible
(Reparaz, 2015)
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We realized and verified the smallest
masked AES in hardware

Practice

- 1st- order
- 2nd- order

Theory with d+1 shares

Masking with d+1 shares
INn nonlinear operations

IS possible
(Reparaz, 2015)
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Masking AES with d+1 Shares in Hardware

Threshold SCA Implementation
Implementations Evaluation Cost
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Threshold Implementations
is a SCA countermeasure

Provable security with minimal
assumptions on the hardware

Boolean masking scheme based on
secret sharing and multiparty computation
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One extra condition is required

for using d+1 shares
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ENCRYPTION

Linear/Affine operations
are easy to mask
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Nonlinear operations are
harder to mask
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Nonlinear operations are >t
harder to mask
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Canright’s S-box decomposition
has shown to be a good starting point

GF(2%) multiplier

—> 4-bit GF(2) multiplier

— 1-bit



The number of output shares
depends on the algebraic degree
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The number of output shares
depends on the algebraic degree

GF(2Y) inverter GF(2*) multiplier

Algebraic degree = 3 Algebraic degree = 2
S, = (d+1)3 S, = (d+1)?

out out

A lower algebraic degree leads to a decrease in number
of output registers and number of random masks



We partition Canright’s S-box
to only use multipliers

GF(2%) multiplier

—> 4-bit GF(2%) multiplier

— 1-bit



Masks are refreshed after
each multiplier

GF(2%) multiplier
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We further reduce the area by adding
outputs In a non-complete way
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Bilgin, 2015 =



Masking AES with d+1 Shares in Hardware

SCA
Evaluation



The SCA is performed on
a low-noise platform
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AES and mask generation are
alternated to keep the noise low
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AES and mask generation are
alternated to keep the noise low

Randomness
from parallel
Power PRINCE PRNG
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How leakage detection is performed



How leakage detection is performed

/ lﬁ“f‘af ‘N vM V\{*J\ / il jw.w

SN

group A GrOUp B

C— —
-

-

R L Wl { f f »f
TR w ww "

%—J—-“‘



How leakage detection is performed
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How leakage detection is performed
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The 1st-order implementation passes
leakage detection with 100M traces

| st-order
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The 1st-order implementation passes
leakage detection with 100M traces
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The 2nd-order implementation passes
leakage detection with 100M traces
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The 2nd-order implementation passes
leakage detection with 100M traces
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Bivariate leakage detected in the 2nd-
order implementation with PRNG Off

t-value
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Bivariate leakage detected in the 2nd-
order implementation with PRNG Off
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No leakage detected in the 2nd-order
implementation with 100M traces
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No leakage detected in the 2nd-order
implementation with 100M traces
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Masking AES with d+1 Shares in Hardware

Implementation
Cost
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A smaller AES is achieved

unmasked 1st-order

7282 GE

2421 GE

0.9x

Moradi, 201 |

Bilgin, 2015
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A smaller AES is achieved

unmasked 1st-order 2nd-order
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Mostly due to a smaller AES S-box

unmasked 1st-order
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Bilgin, 2015
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Mostly due to a smaller AES S-box

unmasked 1st-order 2nd-order
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A similar number of clock cycles suffice

unmasked 1st-order
276
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. 1.1X
This work
Moradi, 201 |

Bilgin, 2015
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A similar number of clock cycles suffice

unmasked 1st-order 2nd-order
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More randomness IS consumed

unmasked 1st-order
54 bits
- 32 bits
This work 1 '7X
Moradi, 201 |
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More randomness IS consumed

unmasked 1st-order 2nd-order
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We realized and verified the smallest
masked AES in hardware

Theory Practice Higher-orders
- 1%~ order Randomness
- 2d- order

with d+1 shares reduction




Thank you

Questions ?
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A Tale of Two Shares: Why Two-Share
Threshold Implementation Seems

Worthwhile-and Why it is Not
Chen et al.

Masking AES with d+1
Shares in Hardware
De Cnudde et al.

Consolidating
masking schemes
Reparaz et al.

Domain-Oriented Masking: Compact
Masked Hardware Implementations
with Arbitrary Protection Order
Gross et al.



