Masking AES with d+1 Shares in Hardware

Thomas De Cnudde Oscar Reparaz Begül Bilgin Svetla Nikova Ventzislav Nikov Vincent Rijmen

08/18 - CHES 2016 - Santa Barbara

"In theory there is no difference between theory and practice.

"In theory there is no difference between theory and practice. In practice there is."

"In theory there is no difference between theory and practice. In practice there is."

Practice

Theory

Masking with d+1 shares in nonlinear operations is possible (Reparaz, 2015) "In theory there is no difference between theory and practice. In practice there is."

Theory

Masking with d+1 shares in nonlinear operations is possible (Reparaz, 2015)

Practice

All masked AES use more than d+1 shares (Moradi, 2011, Bilgin, 2015, ...)

We realized and verified the smallest masked AES in hardware

Theory

Masking with d+1 shares in nonlinear operations is possible (Reparaz, 2015)

Practice

- 1st order
- 2nd- order with d+1 shares

Masking AES with d+1 Shares in Hardware

Threshold Implementations SCA Evaluation Implementation Cost

Threshold Implementations is a SCA countermeasure

Provable security with minimal assumptions on the hardware

Threshold Implementations is a SCA countermeasure

Provable security with minimal assumptions on the hardware

Boolean masking scheme based on secret sharing and multiparty computation

Threshold Implementations must satisfy conditions

Uniform Inputs

Correctness

Threshold Implementations must satisfy conditions

Uniform Inputs Correctness dth-order non-completeness

Threshold Implementations must satisfy conditions

Uniform Inputs Correctness dth-order non-completeness

Mask refreshing

One extra condition is required for using d+1 shares

Uniform Inputs Correctness dth-order non-completeness

Mask refreshing

Independent input shares

Linear/Affine operations are easy to mask

Linear/Affine operations are easy to mask

8

Linear/Affine operations are easy to mask

Share 1

Share d+1

Nonlinear operations are harder to mask

Nonlinear operations are harder to mask

Canright's S-box decomposition has shown to be a good starting point

The number of output shares depends on the algebraic degree

Algebraic degree = $3 S_{out} = (d+1)^3$

GF(2⁴) multiplier

The number of output shares depends on the algebraic degree

Algebraic degree = $3 S_{out} = (d+1)^3$

GF(2⁴) multiplier

A lower algebraic degree leads to a decrease in number of output registers and number of random masks

We partition Canright's S-box to only use multipliers

Masks are refreshed after each multiplier

Registers + Mask Refreshing

Masks are refreshed after each multiplier

Registers

Registers + Mask Refreshing

Total randomness was reduced for more efficient first-order security

We further reduce the area by adding outputs in a non-complete way

Masking AES with d+1 Shares in Hardware

Threshold Implementations SCA Evaluation

Implementation Cost

The SCA is performed on a low-noise platform

AES and mask generation are alternated to keep the noise low

Randomness from parallel **PRINCE PRNG** Power RoSoR' **PRNG Off PRNG** On

AES and mask generation are alternated to keep the noise low

Group B

The 1st-order implementation passes leakage detection with 100M traces

l st-order
The 1st-order implementation passes leakage detection with 100M traces

The 2nd-order implementation passes leakage detection with 100M traces

Ist-order

The 2nd-order implementation passes leakage detection with 100M traces

Bivariate leakage detected in the 2ndorder implementation with PRNG Off

Bivariate leakage detected in the 2ndorder implementation with PRNG Off

PRNG Off

No leakage detected in the 2nd-order implementation with 100M traces

PRNG On

No leakage detected in the 2nd-order implementation with 100M traces

PRNG On

Masking AES with d+1 Shares in Hardware

Threshold Implementations Evaluation

SCA

Implementation Cost

A smaller AES is achieved

unmasked 1st-order

A smaller AES is achieved

Mostly due to a smaller AES S-box

unmasked 1st-order

Bilgin, 2015

Mostly due to a smaller AES S-box

A similar number of clock cycles suffice

unmasked 1st-order

1.1x

226

This work

Moradi, 2011

Bilgin, 2015

A similar number of clock cycles suffice

More randomness is consumed

unmasked 1st-order

54 bits	
32 bits	

1.7x

This work

Moradi, 2011

Bilgin, 2015

More randomness is consumed

Thank you

Questions ?

08/18 - CHES 2016 - Santa Barbara

A Tale of Two Shares: Why Two-Share Threshold Implementation Seems Worthwhile-and Why it is Not

Chen et al.

Masking AES with d+1 Shares in Hardware De Cnudde et al.

Consolidating masking schemes

Reparaz et al.

Domain-Oriented Masking: Compact Masked Hardware Implementations with Arbitrary Protection Order *Gross et al.*